A Family of Gauss - Kronrod Quadrature Formulae
نویسندگان
چکیده
We show, for each n > 1, that the (2ra + l)-point Kronrod extension of the n-point Gaussian quadrature formula for the measure do-^t) = (1 + 7)2(1 t2)^2dt/((l + -y)2 47t2), -K -y < 1, has the properties that its n + 1 Kronrod nodes interlace with the n Gauss nodes and all its 2ra + 1 weights are positive. We also produce explicit formulae for the weights.
منابع مشابه
Error Bounds for Gauss-kronrod Quadrature Formulae
The Gauss-Kronrod quadrature formula Qi//+X is used for a practical estimate of the error R^j of an approximate integration using the Gaussian quadrature formula Q% . Studying an often-used theoretical quality measure, for ߣ* , we prove best presently known bounds for the error constants cs(RTMx)= sup \RlK+x[f]\ ll/(l»lloo<l in the case s = "Sn + 2 + tc , k = L^J LfJ • A comparison with the Ga...
متن کاملAn Algebraic Study of Gauss-Kronrod Quadrature Formulae for Jacobi Weight Functions*
We study Gauss-Kronrod quadrature formulae for the Jacobi weight function «/"'"'(t) = (l-i)Q(l + t)'3 and its special case a = ß = X^ of the Gegenbauer weight function. We are interested in delineating regions in the (a, /3)-plane, resp. intervals in A, for which the quadrature rule has (a) the interlacing property, i.e., the Gauss nodes and the Kronrod nodes interlace; (b) all nodes contained ...
متن کاملA historical note on Gauss-Kronrod quadrature
The idea of Gauss–Kronrod quadrature, in a germinal form, is traced back to an 1894 paper of R. Skutsch. The idea of inserting n+1 nodes into an n-point Gaussian quadrature rule and choosing them and the weights of the resulting (2n+1)-point quadrature rule in such a manner as to maximize the polynomial degree of exactness is generally attributed to A.S. Kronrod [2], [3]. This is entirely justi...
متن کاملStieltjes-type Polynomials on the Unit Circle
Stieltjes-type polynomials corresponding to measures supported on the unit circle T are introduced and their asymptotic properties away from T are studied for general classes of measures. As an application, we prove the convergence of an associated sequence of interpolating rational functions to the corresponding Carathéodory function. In turn, this is used to give an estimate of the rate of co...
متن کاملStieltjes Polynomials and the Error of Gauss-kronrod Quadrature Formulas
The Gauss-Kronrod quadrature scheme, which is based on the zeros of Legendre polynomials and Stieltjes polynomials, is the standard method for automatic numerical integration in mathematical software libraries. For a long time, very little was known about the error of the Gauss-Kronrod scheme. An essential progress was made only recently, based on new bounds and as-ymptotic properties for the S...
متن کامل